On the banks of the Susquehanna River in Columbia County, in the northeast corner of the state of Pennsylvania, just outside the town of Berwick; population 10,355; lies a nuclear power plant. As you drive down route 11, you can see the steam pouring out of its mammoth towers over the tops of the trees. This is the single source of power in the area for a 20-mile radius. That means the 2500 megawatts of power it generates must cover an area of 1300 square miles and convert for every possible need within that geography. Columbia County has a little over 64,000 people.
Of all the energy we harvest and generate, we lose more than 2/3rds of it due to transmission, conversion, distribution, and what experts call “rejected”. This may not seem like a big deal in the Pennsylvania countryside but try a metropolis like Manhattan or the entire energy needs of a country like the United States and you’re talking about a hemorrhaging of money and efficiency.
One of the pillars of modern society, the power grid, teeters on the brink of obsolescence. In this realm, vast amounts of energy are generated, only to be squandered through inefficiencies, unidirectional flow, passive transformers, and countless conversion points. It is a system that is in danger of outliving its usefulness, struggling to meet the demands of an increasingly electrified world.
Recent news stories have highlighted the challenges faced by our aging power infrastructure, as it groans under the weight of the terawatt hours required to power our cities, our transportation, our ever-growing array of personal electronics and smart homes. Don’t forget a little thing called AI.
But amidst this landscape of inefficiency and waste, a glimmer of hope emerges. Distributed energy resources, solid-state transformers, and innovative storage solutions, powered by the likes of silicon carbide, offer a path forward. By harnessing these technologies, we can preserve the power we generate, ensuring that as many watts as possible are used to their fullest potential. It’s a world that’s not too far away, but we have a choice: to cling to the vestiges of a bygone era or to embrace the promise of a more efficient, sustainable future. With each passing day, the imperative grows clearer – we must adapt, we must innovate, and we must evolve, for the sake of our planet and the generations to come. As we enter the third wave of silicon carbide, some BIG ideas are propelling what could be a very prosperous future.
How can Microchip Technology help fix the inefficiencies of modern power grids?
Links from the episode:
Guests:
Dr. Kevin Speer
Comments (0)
To leave or reply to comments, please download free Podbean or
No Comments
To leave or reply to comments,
please download free Podbean App.