
Enhance the Human Experience
So much of our daily lives are controlled or influenced by electronics. We rely on GPS to direct us, we hit "brew" on our coffee machines for our mornin' cup of Joe, we wave our hands over a sensor to get running water from a faucet, and press a button to open our garage doors.
But do we really know what's going on inside? Are we aware of the universe of technology and calculations going on right under our nose?
Beyond the Microchip takes you inside the world of Embedded Control technologies to understand how the chips and sensors we can't see impact our lives in dramatic ways. They remind us why we have and embrace technology, to enhance the human experience.
Join us each episode as we look at an aspect of our daily lives that shapes what it means to be human and how we can empower the innovation that enhances that experience through Microchip Technology.
Subscribe to Beyond the Microchip wherever you get your podcasts.
Episodes
Tuesday Feb 04, 2025
Tuesday Feb 04, 2025
“We hold patents on a few gadgets we confiscated from visitors. Velcro, microwave ovens, liposuction.”
- Tommy Lee Jones as "K", describing how the Men in Black fund their exploits
Very amusing concept for science fiction, but the boundary between space exploration and everyday life blurs in reality, where innovations born in the cold vacuum of space find their way into our homes, transforming how we live and work.
This is the story of how necessity in the cosmos became the mother of invention on Earth.
Picture working in an environment where temperatures swing from a scorching +250°F in direct sunlight to a bone-chilling -250°F in the shade, where traditional lubricants freeze or evaporate, and where the absence of air means no natural cooling. The solutions developed for these extreme conditions would eventually trickle down to our garages and workshops, spawning not just the cordless drill but an entire family of battery-powered tools that have liberated us from the tyranny of power cords.
But the story doesn't end there.
These cosmic hand-me-downs represent more than just clever adaptations - they're testament to human ingenuity under the most extreme conditions imaginable. When engineers had to solve problems where failure wasn't an option, up there, they created solutions so robust and versatile that they transformed life, down here, on Earth.
Today, as we peer into our garages or kitchen cabinets, we might not immediately see the connection to space exploration. But with each press of the microwave button or squeeze of a drill trigger, we're benefiting from a legacy of innovation that began with humanity's greatest adventure. These everyday tools carry within them the DNA of space exploration, reminding us that sometimes the most practical solutions come from the most extraordinary challenges.
How does Microchip Technology empower innovation up there, so we can enjoy it down here?
This is part 2 of a two-part episode.
Links from the episode:
https://www.microchip.com/space
Guests:
Eli Kawam
Bill Dillard
Tuesday Jan 28, 2025
Tuesday Jan 28, 2025
“We hold patents on a few gadgets we confiscated from visitors. Velcro, microwave ovens, liposuction.”
- Tommy Lee Jones as "K", describing how the Men in Black fund their exploits
Very amusing concept for science fiction, but the boundary between space exploration and everyday life blurs in reality, where innovations born in the cold vacuum of space find their way into our homes, transforming how we live and work.
This is the story of how necessity in the cosmos became the mother of invention on Earth.
Picture working in an environment where temperatures swing from a scorching +250°F in direct sunlight to a bone-chilling -250°F in the shade, where traditional lubricants freeze or evaporate, and where the absence of air means no natural cooling. The solutions developed for these extreme conditions would eventually trickle down to our garages and workshops, spawning not just the cordless drill but an entire family of battery-powered tools that have liberated us from the tyranny of power cords.
But the story doesn't end there.
These cosmic hand-me-downs represent more than just clever adaptations - they're testament to human ingenuity under the most extreme conditions imaginable. When engineers had to solve problems where failure wasn't an option, up there, they created solutions so robust and versatile that they transformed life, down here, on Earth.
Today, as we peer into our garages or kitchen cabinets, we might not immediately see the connection to space exploration. But with each press of the microwave button or squeeze of a drill trigger, we're benefiting from a legacy of innovation that began with humanity's greatest adventure. These everyday tools carry within them the DNA of space exploration, reminding us that sometimes the most practical solutions come from the most extraordinary challenges.
How does Microchip Technology empower innovation up there, so we can enjoy it down here?
This is part 1 of a two-part episode.
Links from the episode:
https://www.microchip.com/space
Guests:
Eli Kawam
Bill Dillard
Tuesday Jan 07, 2025
Tuesday Jan 07, 2025
Our insatiable appetite for information has gone digital. Once upon a time, knowledge seekers ventured into libraries, thumbing through card catalogs and dusty volumes. Today, we simply speak our questions in the form of a prompt, and artificial minds spring to life with answers. But this convenience comes with a hidden cost - one measured in terawatts.
In the sprawling datacenters that power our AI revolution, rows upon rows of servers hum with activity, each query demanding its share of electricity. These digital brains, built on advanced processing chips from companies with trillion-dollar valuations on the stock market, consume power at rates that would make earlier computers blush.
Tech giants like the “Magnificent 7” aren't waiting for solutions - they're creating them. Their "Bring Your Own Energy" approach, investing in nuclear power after years of renewable energy projects, signals a recognition that our digital future requires more than just solar panels and wind turbines.
The mathematics of our energy future is both simple and staggering. Current datacenter power supplies, even those meeting the stringent 80 Plus Titanium standard with 90% efficiency, still waste enough energy to power small cities. Every percentage point of efficiency gained or lost has massive implications for our planet and our pockets.
Enter silicon carbide, a material that promises to revolutionize how we handle power. Like a master conductor leading an orchestra, silicon carbide manages electricity with unprecedented precision and efficiency. Whether it's guiding power from a nuclear plant through an omnidirectional grid or converting it for use in a datacenter server rack, this remarkable semiconductor reduces waste at every step.
Think of the power grid as a vast river system. Traditional materials are like leaky canals, losing precious energy along the way. Silicon carbide creates superhighways for electricity, ensuring more power reaches its destination. In the world of datacenters, where every watt counts, this efficiency isn't just an improvement - it's a necessity.
As we stand at this crossroads of digital transformation and energy demand, the path forward becomes clear. The answer isn't just about generating more power - it's about using it more intelligently. Silicon carbide technology offers us a way to quench our growing thirst for energy without draining our resources dry.
The future we're building, with its artificial intelligence at the helm, demands power on an unprecedented scale. But with innovations like silicon carbide leading the charge, we're not just facing this challenge - we're transforming it into an opportunity for a more efficient, sustainable world.
How can Microchip Technology help prepare us for the future energy demands data centers and AI will require?
Links from the episode:
www.microchip.com/sic
Guest:
Nitesh Satheesh
Tuesday Dec 17, 2024
Episode 017 - Silicon Carbide and Omnidirectional Power Grids
Tuesday Dec 17, 2024
Tuesday Dec 17, 2024
On the banks of the Susquehanna River in Columbia County, in the northeast corner of the state of Pennsylvania, just outside the town of Berwick; population 10,355; lies a nuclear power plant. As you drive down route 11, you can see the steam pouring out of its mammoth towers over the tops of the trees. This is the single source of power in the area for a 20-mile radius. That means the 2500 megawatts of power it generates must cover an area of 1300 square miles and convert for every possible need within that geography. Columbia County has a little over 64,000 people.
Of all the energy we harvest and generate, we lose more than 2/3rds of it due to transmission, conversion, distribution, and what experts call “rejected”. This may not seem like a big deal in the Pennsylvania countryside but try a metropolis like Manhattan or the entire energy needs of a country like the United States and you’re talking about a hemorrhaging of money and efficiency.
One of the pillars of modern society, the power grid, teeters on the brink of obsolescence. In this realm, vast amounts of energy are generated, only to be squandered through inefficiencies, unidirectional flow, passive transformers, and countless conversion points. It is a system that is in danger of outliving its usefulness, struggling to meet the demands of an increasingly electrified world.
Recent news stories have highlighted the challenges faced by our aging power infrastructure, as it groans under the weight of the terawatt hours required to power our cities, our transportation, our ever-growing array of personal electronics and smart homes. Don’t forget a little thing called AI.
But amidst this landscape of inefficiency and waste, a glimmer of hope emerges. Distributed energy resources, solid-state transformers, and innovative storage solutions, powered by the likes of silicon carbide, offer a path forward. By harnessing these technologies, we can preserve the power we generate, ensuring that as many watts as possible are used to their fullest potential. It’s a world that’s not too far away, but we have a choice: to cling to the vestiges of a bygone era or to embrace the promise of a more efficient, sustainable future. With each passing day, the imperative grows clearer – we must adapt, we must innovate, and we must evolve, for the sake of our planet and the generations to come. As we enter the third wave of silicon carbide, some BIG ideas are propelling what could be a very prosperous future.
How can Microchip Technology help fix the inefficiencies of modern power grids?
Links from the episode:
Guests:
Dr. Kevin Speer
Tuesday Nov 26, 2024
Episode 016 - Gate Drivers and the Rise of Residential EV Charging
Tuesday Nov 26, 2024
Tuesday Nov 26, 2024
The service station is a staple of America’s love affair with the automobile. Now it’s going away as the rise of electric vehicles and e-mobility takes over for internal combustion engines. How will this transition affect car culture and what’s involved with onboard charging? How can we invert a process that’s over 100 years old?
One little linchpin of the entire process is the gate driver, which helps to make residential charging possible in the fast-growing sector of electric vehicles. Imagine a world where the ritual of visiting the gas station on the corner to refuel your vehicle becomes a distant memory, replaced by the convenience and comfort of charging your electric car in the sanctuary of your own home. This is the world of residential electric vehicle charging, a revolution that promises to transform not only the way we power our vehicles but also the very nature of our relationship with transportation.
At the heart of this transformation lies the onboard charger, a marvel of modern engineering that allows your vehicle to accept the 110 or 220 volts of electricity that flow through your home. But the true unsung hero of this story is the Gate Driver, a device capable of operating in astonishing high-voltage environments, like 400-800 volts, converting power through wide band gap technologies like silicon carbide to maximize the efficiency of residential electricity for your vehicle.
Recent news stories have highlighted the growing trend of onboard charging and the profound impact it is having on our daily lives. No longer bound by the need to visit a service station, we find ourselves free to reimagine the way we use transportation, from the daily commute to long-distance travel.
As we embrace this new era of electric mobility, we face challenges in adapting our infrastructure to meet the growing demand for power. But with each passing day, the pace of innovation accelerates, bringing us closer to a future where the efficiency and convenience of residential charging become the norm, thanks to the unsung heroes like the Gate Driver that make it all possible.
How can Microchip Technology help maintain our love affair with the automobile as we transition to an electric future?
Links from the episode:
Guests:
Geoff Garcia
Tuesday Nov 05, 2024
Episode 015 - Cybersecurity and the Internet of Medical Things
Tuesday Nov 05, 2024
Tuesday Nov 05, 2024
The Internet of Things is nothing short of a modern miracle. The ability to connect devices across a network and control them remotely, gathering data, performing routine maintenance, and saving countless hours of preparation time and direct human interaction. It gave rise to the need for Smart, Connected, and Secure technology solutions. That’s great for the residential home or the industrial plant across town. Could that level of sophistication and convenience follow us to other places, like, say, the hospital?
We are, in fact, living the future today - where a world of medical devices are no longer standalone entities, but interconnected nodes in a vast network known as the Internet of Medical Things (IoMT). This digital revolution promises to transform patient care, enabling real-time monitoring, remote diagnostics, and personalized treatment plans. But these utopian dreams of a better health system still have some caveats to be aware of. As we embrace this new frontier, we must also confront the looming threat of cyber insecurity.
In recent years, ransomware attacks have targeted healthcare institutions worldwide, from the WannaCry outbreak that crippled the UK's National Health Service in 2017 to the more recent Ryuk attacks on U.S. hospitals in 2020 like Locky in Los Angeles. According to the HIPAA Journal, “at least 141 hospitals were directly affected by ransomware attacks in 2023” alone where the number of attacks almost doubled since the previous year. These incidents expose the vulnerabilities in our medical device infrastructure, where outdated software and lack of encryption leave patient data and lives at risk. The American Hospital Association describes these not as white-collar crimes, but “threat-to-life crimes” and they can be a life-or-death matter.
Yet, amidst these challenges, there is hope. As technology advances, so too do the solutions for securing IoMT. With the development of purpose-built embedded control technology solutions, we stand on the edge of a new era in connected care. Imagine a future where medical devices not only communicate seamlessly but also protect patient information from the most sophisticated attacks.
How can Microchip Technology strengthen and reinforce the Internet of Medical Things and potentially hold the key to unlocking a brighter, healthier future?
Links from the episode:
Smart Medical Solutions | Microchip Technology
CryptoAuthentication™ Secure Key Storage | Microchip Technology
Guests:
Justin Wilson
Tuesday Oct 15, 2024
Tuesday Oct 15, 2024
Picture if you will, a source of energy, so radiant, that it holds the key to our energy future. The sun, a source of limitless potential, emits almost 4 octillion watts of energy every second. That’s a 10 with 26 zeros behind it. If we could harness just a fraction of this power, it would be enough to meet the world's energy needs many times over.
In emerging markets like Vietnam, Malaysia, and Kenya, the race to capture the sun's energy is on. These nations recognize the transformative potential of solar power, not only for their economies but also for the health of our planet. Vietnam aims to generate 20% of its electricity from renewable sources by 2030, while Malaysia has set a target of 20% by 2025. In Kenya, the Garissa Solar Power Plant, the largest in East Africa, is already providing clean energy to thousands of homes.
But the path to a solar-powered future is not without its challenges. Efficiency in converting solar energy to electricity remains a hurdle, with current technology capturing only a portion of the sun's potential. However, advancements in materials science and energy storage hold the promise of a brighter tomorrow. As well as embedded control technologies including integrated circuits.
Imagine a world where smart energy grids, powered by the sun, provide clean, affordable electricity to every corner of the globe. A world where the very source of life on Earth also sustains our modern way of living.
How could Microchip Technology help us further embrace the boundless potential of solar power?
Links from the episode:
Guests:
Jay Nagle
Tuesday Sep 24, 2024
Episode 013 - Chips Making Chips
Tuesday Sep 24, 2024
Tuesday Sep 24, 2024
Machines that build machines. It’s a curious paradox. Whenever you consider something that builds itself, physically, it could conjure thoughts of an infinity loop or an M.C. Escher painting. The never-ending loop of technology.
The extreme ultraviolet (EUV) lithography machine, a marvel of modern engineering, etches patterns onto silicon wafers with unparalleled precision, giving birth to the microchips that power our world. A machine so advanced, so intricate, that it holds the power to create the very building blocks of our digital age. It gives birth to the state of the art in semiconductors. Indeed, the future pulled forward to today.
As we marvel at the bleeding edge of technology, we often overlook the humble components that make it all possible. Inside every EUV lithography machine, a symphony of legacy technologies plays out, from power management diodes to analog circuits. These unsung heroes, though less glamorous than their cutting-edge counterparts, are the backbone of innovation. In the wake of the COVID-19 pandemic, the world has witnessed the fragility of global semiconductor supply chains. Black swan events have exposed the dangers of over-reliance on a single source, leading to shortages that ripple across industries. It is a stark reminder that the latest and greatest cannot exist without the tried and true.
As we navigate this era of rapid technological advancement, let us not forget the importance of balance. The yin and yang of old and new, of leading and lagging-edge, are forever intertwined in the dance of progress. The lead guitar and vocals may provide the memorable moments in your favorite songs, but have you ever heard a song without the drums? Modern architecture can inspire and awe, but ever tried to build a house without a concrete foundation? Trips to the zoo to visit the tigers provide moments of wonder; what would happen if the protective glass was removed?
Remember that next time you marvel at the latest gadget or gizmo. Take a moment to appreciate the unassuming components that make it all possible. For in the grand scheme of innovation, every piece of the puzzle matters, no matter how small, outdated, or seemingly invisible.
How does Microchip Technology provide the critical components for producing Microchip Technology?
Links from the episode:
Guests:
Leon Gross
Monday Sep 16, 2024
Monday Sep 16, 2024
“Words are the new weapons, satellites the new artillery.”
Jonathan Pryce’s villain Elliot Carver says to James Bond in Tomorrow Never Dies right before he manipulates a GPS signal to make a British destroyer begin a confrontation with the Chinese military, may seem like the realm of pop culture; the idea of manipulating GPS signals and disrupting communications has long been a staple of spy thrillers like our favorite James Bond films. But while these scenarios make for thrilling entertainment, the reality is far more complex and consequential.
The invisible threads of satellite technology puppet our every move, from the ships traversing vast oceans to the cars navigating city streets. At the heart of this intricate web lies the Global Navigation Satellite System (GNSS), a constellation of satellites that provide precise positioning, navigation, and timing (PNT) information to countless devices across the globe.
Recent news stories have highlighted the vulnerabilities of GNSS, from the possibility of signal jamming and spoofing to the potential for widespread disruption in the event of a satellite failure. This isn’t just in movies, a recent book by Washington Post columnist David Ignatius about a Russian space scientist who finds evidence of a system kill switch, that can turn off the Global Positioning System, on which every aspect of U.S. communications, transportation, and our economic lifeline depends on.
These risks are not just the stuff of fiction; they have real-world implications for our increasingly interconnected society.
Fortunately, advancements in alternative positioning and timing systems offer a promising solution. By harnessing the power of ground-based infrastructure, these technologies provide a resilient and secure alternative to satellite-based navigation, ensuring that our critical systems remain operational even in the face of adversity.
How can Microchip Technology help in securing our critical infrastructure, and help world leaders chart a course towards a future where the doomsday scenarios remain firmly in the realm of fiction?
This is part 2 of a two-part episode.
Links from the episode:
https://www.microchip.com/clock
Guests:
Greg Wolff
Tuesday Sep 03, 2024
Tuesday Sep 03, 2024
“Words are the new weapons, satellites the new artillery.”
Jonathan Pryce’s villain Elliot Carver says to James Bond in Tomorrow Never Dies right before he manipulates a GPS signal to make a British destroyer begin a confrontation with the Chinese military, may seem like the realm of pop culture; the idea of manipulating GPS signals and disrupting communications has long been a staple of spy thrillers like our favorite James Bond films. But while these scenarios make for thrilling entertainment, the reality is far more complex and consequential.
The invisible threads of satellite technology puppet our every move, from the ships traversing vast oceans to the cars navigating city streets. At the heart of this intricate web lies the Global Navigation Satellite System (GNSS), a constellation of satellites that provide precise positioning, navigation, and timing (PNT) information to countless devices across the globe.
Recent news stories have highlighted the vulnerabilities of GNSS, from the possibility of signal jamming and spoofing to the potential for widespread disruption in the event of a satellite failure. This isn’t just in movies, a recent book by Washington Post columnist David Ignatius about a Russian space scientist who finds evidence of a system kill switch, that can turn off the Global Positioning System, on which every aspect of U.S. communications, transportation, and our economic lifeline depends on.
These risks are not just the stuff of fiction; they have real-world implications for our increasingly interconnected society.
Fortunately, advancements in alternative positioning and timing systems offer a promising solution. By harnessing the power of ground-based infrastructure, these technologies provide a resilient and secure alternative to satellite-based navigation, ensuring that our critical systems remain operational even in the face of adversity.
How can Microchip Technology help in securing our critical infrastructure, and help world leaders chart a course towards a future where the doomsday scenarios remain firmly in the realm of fiction?
This is part 1 of a two-part episode.
Links from the episode:
https://www.microchip.com/clock
Guests:
Greg Wolff